*

LUE - Conception de matériaux architecturés et de métamatériaux aux propriétés acoustiques optimales à l'aide de méthodes d'optimisation topologique multi-échelles et de techniques d'apprentissage automatique

Offre de thèse

LUE - Conception de matériaux architecturés et de métamatériaux aux propriétés acoustiques optimales à l'aide de méthodes d'optimisation topologique multi-échelles et de techniques d'apprentissage automatique

Date limite de candidature

31-12-2024

Date de début de contrat

01-03-2025

Directeur de thèse

GANGHOFFER Jean-françois

Encadrement

Nico Declerq, Professeur, Georgia Tech Europe (GTE)

Type de contrat

Concours pour un contrat doctoral

école doctorale

C2MP - CHIMIE MECANIQUE MATERIAUX PHYSIQUE

équipe

DEPARTEMENT 1 : Mécanique des Matériaux, des Structures et du Vivant (MMSV)

contexte

L'étude des cristaux phononiques, des bandes interdites acoustiques et des matériaux architecturés est à la pointe de l'ingénierie moderne des matériaux. Ces matériaux offrent la possibilité de contrôler la propagation des ondes de manière inédite, ce qui permet de relever des défis cruciaux tels que : - La création de matériaux ayant des propriétés de bande interdite acoustique spécifiques. - La localisation et le guidage des ondes dans les structures phononiques et architecturées. - La compréhension de la propagation non linéaire des ondes dans les AM sous des intensités élevées.

spécialité

Mécanique des Matériaux

laboratoire

LEM3 - Laboratoire d Etude des Microstructures et de Mécanique des Matériaux

Mots clés

Matériaux architecturés, Propriétés acoustiques, Métamatériaux, Méthodes d'homogénéisation, Optimisation topologique, Intelligence artificielle

Détail de l'offre

L'étude des cristaux phononiques, des bandes interdites acoustiques et des matériaux architecturés est à la pointe de l'ingénierie moderne des matériaux. Ces matériaux offrent la possibilité de contrôler la propagation des ondes de manière inédite, ce qui permet de relever des défis cruciaux tels que :
- La création de matériaux ayant des propriétés de bande interdite acoustique spécifiques.
- La localisation et le guidage des ondes dans les structures phononiques et architecturées.
- la compréhension de la propagation d'ondes non linéaires dans les matériaux architecturés sous des intensités élevées.
L'objectif principal de la thèse est de concevoir et de synthétiser des matériaux architecturés et des métamatériaux avec des propriétés dynamiques sans précédent en utilisant une combinaison de techniques avancées de modélisation, d'optimisation et de fabrication et d'effectuer des recherches expérimentales pour tester et comprendre la propagation du son à travers eux.
Les principaux objectifs sont les suivants :
1. Développement de modèles de milieux continus généralisés :
- Élaborer des modèles enrichis, tels que les cadres de gradient de déformation, de Cosserat et micromorphes, pour décrire le comportement des matériaux architecturés à haute fréquence.
- Repousser les limites de la direction des ondes et du contrôle de la bande interdite en utilisant des techniques innovantes d'optimisation de la topologie et d'apprentissage automatique.
2. Modélisation micromécanique et effets non linéaires :
- Formuler des modèles micromécaniques prédictifs pour relier la topologie des cellules unitaires au comportement dynamique à l'échelle mésoscopique et macroscopique.
- Incorporer les effets non linéaires, y compris les instabilités, pour concevoir des matériaux ayant des propriétés acoustiques spécifiques et contrôler les trajectoires de déformation.
3. Validation expérimentale des matériaux avancés :
- Fabriquer des matériaux avancés et des métamatériaux à l'aide de méthodes de fabrication additive.
- Mesurer leurs propriétés acoustiques avec une grande précision pour valider les modèles numériques.
4. Conception fonctionnelle des matériaux à gradients de propriétés :
- Étudier la conception de ces matériaux qui exploitent la distribution optimale des propriétés des matériaux à l'échelle macroscopique pour une manipulation avancée des ondes, y compris la réduction du bruit et l'atténuation des vibrations.
5. Dynamique à haute fréquence et récolte d'énergie :
- Étudier les phénomènes dynamiques tels que la génération d'harmoniques et la diffraction non linéaire dans les environnements acoustiques à haute intensité.
- Développer des métasurfaces pour des applications de collecte d'énergie en utilisant des matériaux piézoélectriques et flexoélectriques.

Keywords

Architected Materials, Acoustic properties, Metamaterials, Homogenization methods, Topology optimization, Machine learning techniques

Subject details

The study of phononic crystals, acoustic bandgaps, and architected materials (AMs) is at the forefront of modern materials engineering. These materials provide opportunities to control wave propagation in unprecedented ways, addressing critical challenges such as: • The creation of materials with specific acoustic bandgap properties. • Wave localization and guiding in phononic and architected structures. • Understanding nonlinear wave propagation in AMs under high intensities. The overarching goal of the Thesis is to design and synthesize architected materials and metamaterials with unprecedented dynamic properties using a combination of advanced modeling, optimization, and fabrication techniques and perform experimental research to test and understand sound propagation through them. Key objectives include: 1. Development of Generalized Continuum Models: • Elaborate enriched models, such as strain-gradient, Cosserat, and micromorphic frameworks, to describe AM behavior at high frequencies. • Push the limits of wave steering and bandgap control using innovative topology optimization and machine learning techniques. 2. Micromechanical Modeling and Nonlinear Effects: • Formulate predictive micromechanical models to link unit cell topology with dynamic behavior at mesoscopic and macroscopic scales. • Incorporate nonlinear effects, including instabilities, to design materials with specific acoustic properties and control deformation paths. 3. Experimental Validation of Advanced Materials: • Fabricate AMs and metamaterials using additive manufacturing methods. • Measure their acoustic properties with high precision to validate numerical models. 4. Functional Design of FGMs: • Explore the design of FGMs that leverage the optimal distribution of material properties at the macroscale for advanced wave manipulation, including noise reduction and vibration mitigation. 5. High-Frequency Dynamics and Energy Harvesting: • Investigate dynamic phenomena such as harmonic generation and nonlinear diffraction in high-intensity acoustic environments. • Develop metasurfaces for energy harvesting applications utilizing piezoelectric and flexoelectric materials.

Profil du candidat

Le candidat est titulaire d'une maîtrise en mécanique ou d'un diplôme d'ingénieur en ingénierie et possède des compétences en mécanique des milieux continus, en technique de simulations par éléments finis et en conception de matériaux.
De solides compétences analytiques, un gout avéré pour la modélisation ainsi qu'une volonté de s'engager dans la recherche expérimentale, sont essentiels en vue de la réussite du projet de thèse.

Candidate profile

The ideal candidate will have a Master's degree (or equivalently an engineer degree) in mechanics or an engineering field and expertise in continuum mechanics, finite element analysis and material design. Strong analytical skills, a vivid interest in modeling and a willingness to engage in experimental research, and are essential for the success of the PhD thesis project.

Référence biblio

[1] M. B. Assouar, B. Liang, Y. Wu, Y. Li, J-C. Cheng & Y. Jing. Acoustic Metasurfaces. Nature Reviews Materials 3, (2018) 460. ESI Highly Cited paper.
[2] Y. Li & M. B. Assouar. Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl. Phys. Lett., 108 (2016) 063502. ESI highly cited paper.
[3] Y. Zhu, L. Cao, A. Merkel, S-W. Fan, B. Vincent & M. B. Assouar. Janus acoustic metascreen with nonreciprocal and reconfigurable phase modulations. Nature Communications 12 (2021) 7089.
[4] K. Donda, Y. Zhu, A. Merkel, S. Fan, L. Cao, S. Wan, M. B. Assouar. Ultrathin Acoustic Absorbing Metasurface Based on Deep Learning Approach. Smart Materials and Structures 30 (2021) 085003.
[5] Y. Zhu, A. Merkel, K. Donda, S. Fan, L. Cao & M. B. Assouar. Nonlocal acoustic metasurface for ultrabroadband sound absorption. Phys. Rev. B 103 (2021) 064102.
[6] L. Cao, Y. Zhu, S. Wan, Y. Zeng, Y. Li and M. B. Assouar. Perfect Absorption of Flexural Waves Induced by Bound State in the Continuum. Extreme Mechanics Letters 47 (2021) 101364.
[7. K. Donda, Y. Zhu, S. Fan, L. Cao, Y. Li and M. B. Assouar. Extreme low-frequency ultrathin acoustic absorbing metasurface. Applied Physics Letters 115, (2019) 173506.
[8] Y. Zhu & M. B. Assouar. Multifunctional acoustic metasurface based on an array of Helmholtz resonators. Phys. Rev. B, 99 (2019) 174109.
[9] S. P. Beeby, M. J. Tudor, and N. M. White. Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17 (2006) R175.
[10] R. D. Schaller and V. I. Klimov. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92 (2004) 186601.
[11] R. R. King et al. 40% efficient metamorphic GaInP/ GaInAs/ Ge multijunction solar cells. Appl. Phys. Lett. 90 (2007) 183516.
[12] A. Sharma et al. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energ. Rev. 13 (2009), 318.
[13] D. Pant et al. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technol. 101 (2010) 1533.
[14] Y. Liu, X. Zhang, Metamaterials: a new frontier of science and technology, Chem. Soc. Rev. 40 (2011) 2494–2507.
[15] T.J. Cui, D.R. Smith, R.P. Liu, Metamaterials: Theory, Design and Applications, Springer, 2010.
[16] K. Liu, T. Zegard, P.P. Pratapa, G.H. Paulino, Unraveling tensegrity tessellations for metamaterials with tunable stiffness and bandgaps, J. Mech. Phys. Solids 131, (2019) 147–166.
[17] D.R. Smith, J.B. Pendry, Homogenization of metamaterials by field averaging, J. Opt. Soc. Am. B 23 (3) (2006) 391.
[18] M. F Ashby. Y.J.M. Bréchet. Designing hybrid materials. Acta materialia, 51(19):5801–5821, 2003.
[19] Karathanasopoulos, N., Dos Reis, F., Diamantopoulou, M., Ganghoffer, J.F., 2020. Mechanics of beams made from chiral metamaterials: tuning deflections through normal-shear strain couplings. Mat. & Design, 189, 108520.
[20] S.E. Alavi, J.-F. Ganghoffer, H. Reda, M. Sadighi, 2022. Construction of micromorphic continua by homogenization based on variational principles. J. Mech. Phys. Solids 153, 104278.
[21] D. J. Steigmann and R. W. Ogden, “Plane deformations of elastic solids with intrinsic boundary elasticity,” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 453, no. 1959, pp. 853–877, Apr. 1997, doi: 10.1098/rspa.1997.0047.
[22] A. Javili, A. McBride, and P. Steinmann, “Thermomechanics of Solids With Lower-Dimensional Energetics: On the Importance of Surface, Interface, and Curve Structures at the Nanoscale. A Unifying Review,” Applied Mechanics Reviews, vol. 65, no. 1, Jan. 2013, doi: 10.1115/1.4023012.
[23] N. Mawassy, J-Francois Ganghoffer, Hilal Reda, Seyed Ehsan Alavi, Hassan Lakiss, 2022. Analysis of surface effects based on first and second strain gradient mechanics. Mech. Mat., 175, 104462.
[24] Erofeyev, V.I., 2003. Wave Processes in Solids with Microstructure. World Scientific. https://doi.org/10.1142/5157.
[25] Rosi, G., Auffray, N., 2016. Anisotropic and dispersive wave propagation within strain-gradient framework. Wave motion, 63, 120-134.
[26] D. K. Trinh, R. Janicke, N. Auffray, S. Diebels, and S. Forest, 2012. Evaluation of generalized continuum substitution models for heterogeneous materials. Int. J. Multiscale Comp. Engng, 10, No.6, 527–549.
[27] S.E. Alavi, J.F. Ganghoffer, M. Sadighi, 2023. Hierarchy of generalized continua issued from micromorphic medium constructed by homogenization. Cont. Mech. Therm., 1-30.
[28] A. Bacigalupo, L. Gambarotta. Identification of non-local continua for lattice-like materials. Applied Physics, 159:103430, 2021.
[29] V. Calisti, A. Lebée, A.A. Novotny, J. Sokolowski. Emergence of elastostatic strain-gradient effects from topological optimization. Eur. J. Mech. / A. 100, 104979.
[30] H. Altenbach, V.A. Eremeyev, 2022. Generalized continua-from the theory to engineering applications, volume 541. Springer.
[31] Ganghoffer, J.F., Goda, I., Sokolowsi, J., Novotny, J., Rahouadj, Sokolowski, J., 2017. Homogenized couple stress model of optimal auxetic microstructures computed by topology optimization. ZAMM. Applied Mathematics and Mechanics / Zeit. Ang. Math. Mech., 2018, 98 (5), pp.696-717.
[32] P.V. Yudin, A.K. Tagantsev, 2013. Fundamentals of flexoelectricity in solids. Nanotechnology, 24.
[33] Cheikho, K, Laurent, C., Ganghoffer, J.F., 2022. A flexible design framework to design graded porous bone scaffolds with adjustable anisotropic properties. J. Mech. Behav. Miomed. Mat., 125, 104887.
[34] A. Anthoine. Second-order homogenisation of functionally graded materials. Int. J. Solids Struct., 47(11):1477–1489, 2010.
[35] D. T. Le, J.J. Marigo. Second-order homogenization of quasi-periodic structures. Vietnam Journal of Mechanics, 40(4):325–348, 2018.
[36] Reda, H., ElNady, K., Ganghoffer, J.F., Lakiss, H., 2017. Control of acoustic properties of network materials by finite pre-deformations: Applications to 3D auxetic network materials. Int. J. Non Linear Mech., 99, 1-12.
[37] V.S. Mashkevich, K.B. Tolpygo, 1957. Electrical, optical and elastic properties of diamond type crystals. Sov. Phys. JETP, 5(3):435–439.
[38] Codony et al., 2021. Modeling flexoelectricity in soft dielectrics at finite deformation. J. Mech. Phys. Solids, 146, 104182.
[39] N. Mawassy, H. Reda, J.-F. Ganghoffer, V.A. Eremeyev, H. Lakiss, 2021. A variational approach of homogenization of piezoelectric composites towards piezoelectric and flexoelectric effective media. Int. J. Engng Sci., 158, 103410.
[40] H. Reda, N. Mawassy, J.A. Ruiz, D. Garcia-Gonzalez, J.-F. Ganghoffer, 2022. Homogenization of magnetoelastic heterogeneous solid bodies based on micropolar magnetoelasticity. Cont. Mech. Therm., 34, 6, 1641-1668.
[41] M Ayad, N. Karathanasopoulos, H. Reda, J.-F. Ganghoffer, H. Lakiss, 2020. On the role of second gradient constitutive parameters in the static and dynamic analysis of heterogeneous media with micro-inertia effects. Int. J. Solids Struct. 190, 58-75.
[42] Ganghoffer, J.F., Reda, H., 2022. Eur. J. Mech. A / Solids. Variational formulation of dynamical homogenization towards nonlocal effective media. Eur. J. Mech. - /Solids. 2093:104487.
[43] Lee, R.H., Sianaghi, P., Hopkins, J.B. et al., 2023. Comparing mechanical neural-network learning algorithms. J. Mech. Des. Jul 2023, 145(7): 071704.
[44] Ganghoffer, J.F., Sokolowski, J., 2014.A micromechanical approach to volumetric and surface growth in the framework of shape optimization. Int. J. Engng Sci., 74, 207-226.
[45] T Yang, Y Jin, T-Y Choi, N Dahotre, and A Neogi. “Mechanically tunable ultrasonic metamaterial lens with a subwavelength resolution at long working distances for bioimaging”. In: Smart Mater. and Struct. 30.1 (2020), p. 015022.
[46] Sarah Herbison, Pooja Dubey, Nico F. Declercq, 'Ultrasonic examination of a thin, textured metal plate with Penrose tile structure consisting of pitched indentations,' Ultrasonics Elsevier 134, 107094, 1-12, 2023.
[47] M D Brown. “Phase and amplitude modulation with acoustic holograms”. In: Appl. Phys. Lett. 115.5 (2019).
[48] M D Brown, B T Cox, and B E Treeby. “Stackable acoustic holograms”. In: Appl. Phys. Lett. 116.26 (2020).
[49] J Kim, S Kasoji, P G Durham, and P A Dayton. “Acoustic holograms for directing arbitrary cavitation patterns”. In:Appl. Phys. Lett. 118.5 (2021)
[50] R. G. Maev, and F. Seviaryn, “Applications of non-linear acoustics for quality control and material characterization,” Journal of Applied Physics, vol. 132, no. 16, Oct, 2022
[51] Pooja Dubey, Nico F. Declercq, Min Zhai, Alexandre Locquet, Mi Jung, Deokha Woo, D. S. Citrin, 'Acoustic Microscopy Characterization of Highly-Ordered Anodized Nanoporous Alumina Films for Nanotechnology Applications', Surfaces and Interfaces 42, 103450, 1-12, 2023
[52] S Jiménez-Gambín, N Jiménez, and F Camarena. “Transcranial focusing of ultrasonic vortices by acoustic holograms”. In: Phys. Rev. Appl. 14.5 (2020), p. 054070.
[53] Nico F. Declercq, 'Rayleigh angle incident ultrasonic beam shape design influence on reflected beam', The European Journal of Acoustics, Acta Acustica 7, 41, 1-8, 2023
[54] Nico F. Declercq, 'Numerical study of beam shape adaptation by anisotropic disk covering transducer or metamaterial', The European Journal of Acoustics, Acta Acustica 2023, 7, 30, 1-11, 2023.
[55] Dicky Silitonga, Nico F. Declercq, 'Evaluation of laminated glass adhesion strength based on Lamb waves through the observation of the Schoch effect', accepted for publication in The European Journal of Acoustics, Acta Acustica, 2023
[56] K Melde, A G Mark, T Qiu, and P Fischer. “Holograms for acoustics”. In: Nature 537.7621 (2016), pp. 518–522.
[57] Esam T. Ahmed Mohamed, Pascal Pomarede, Pierre Mangin, Nico F. Declercq, 'Ultrasonic testing of the biomechanical properties of donation blood', Biomedical Physics & Engineering Express (BPEX) 9, 035019, p 1-8, 2023
[58] Hur, S., Choi, H., Yoon, G.H. et al. Planar ultrasonic transducer based on a metasurface piezoelectric ring array for subwavelength acoustic focusing in water. Sci Rep 12, 1485 (2022).
[59] U. AlKawaja, H. Stoof, Skyrmions in a ferromagnetic Bose–Einstein condensate. Nature 411, 918-920 (2001).
[60] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, Y. Tokura, Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901-904 (2010).
[61] N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. v. Bergmann, A. Kubetzka, R. Wiesendanger, Writing and Deleting Single Magnetic Skyrmions. Science 341, 636-639 (2013).
[62] A. Fert, N. Reyren, V. Cros, Magnetic skyrmions: advances in physics and potential applications. Nat Rev Mater 2, 17031 (2017).
[63] S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. H. Lindner, G. Bartal, Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993-996 (2018).
[64] T. J. Davis, D. Janoschka, P. Dreher, B. Frank, F.-J. M. z. Heringdorf, H. Giessen, Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 368, 386 (2020).
[65] L. Du, A. Yang, A. V. Zayats, X. Yuan, Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nature Physics 15, 650-654 (2019).
[66] S. H. Mousavi, A. B. Khanikaev, Z. Wang, Topologically protected elastic waves in phononic metamaterials. Nat Commun 6, 8682 (2015).
[67] L. Cao, S. Wan, Y. Zeng, Y. Zhu, M. B. Assouar. Phononic skyrmions .Sci. Adv. 9, eadf3652 (2023) https://doi.org/10.1126/sciadv.adf3652
[68] S.-Y. Yu, C. He, Z. Wang, F.-K. Liu, X.-C. Sun, Z. Li, H.-Z. Lu, M.-H. Lu, X.-P. Liu, Y.-F. Chen, Elastic pseudospin transport for integratable topological phononic circuits. Nat Commun 9, 3072 (2018).
[69] R. H. Olsson Iii, I. El-Kady, Microfabricated phononic crystal devices and applications. Measurement Science and Technology 20, 012002 (2008).
[70] S.-Y. Yu, C. He, Z. Wang, F.-K. Liu, X.-C. Sun, Z. Li, H.-Z. Lu, M.-H. Lu, X.-P. Liu, Y.-F. Chen, Elastic pseudospin transport for integratable topological phononic circuits. Nat Commun 9, 3072 (2018).
[71] B. Vermersch, P.-O. Guimond, H. Pichler, P. Zoller, Quantum state transfer via noisy photonic and phononic waveguides. Phys Rev Lett 118, 133601 (2017).
[72] H. Ge, X.-Y. Xu, L. Liu, R. Xu, Z.-K. Lin, S.-Y. Yu, M. Bao, J.-H. Jiang, M.-H. Lu, Y.-F. Chen, Observation of Acoustic Skyrmions. Phys Rev Lett 127, 144502 (2021).
[73] K. Y. Bliokh, F. Nori, Transverse and longitudinal angular momenta of light. Physics Reports 592, 1-38 (2015).
[74] K. Y. Bliokh, D. Smirnova, F. Nori, Quantum spin Hall effect of light. Science 348, 1448-1451 (2015).
[75] Y. Long, J. Ren, H. Chen, Intrinsic spin of elastic waves. PNAS 115, 9951-9955 (2018).