*

CD Dynamique nutritionnelle, signatures épigénétiques et microbiote intestinal : Anatomie d'un carrefour de la programmation fœtale de l'obésité pédiatrique

Offre de thèse

CD Dynamique nutritionnelle, signatures épigénétiques et microbiote intestinal : Anatomie d'un carrefour de la programmation fœtale de l'obésité pédiatrique

Date limite de candidature

07-06-2024

Date de début de contrat

01-10-2024

Directeur de thèse

HEINKEN Almut

Encadrement

- Accueil et accompagnement. L'encadrant et le co-encadrant accompagneront le doctorant dans son évolution, en supervisant régulièrement l'avancée du projet, en lui apportant un encadrement scientifique adapté. - Compréhension et appropriation du projet. Le doctorant sera tenu informé des travaux antérieurs et en cours en rapport avec la problématique de son projet et participera aux réunions d'équipe et du laboratoire. Il sera intégré au « Journal Club » hebdomadaire et aux responsabilités et taches collectives et de veille scientifique au laboratoire. - Valorisation des travaux. Le plan de dissémination des résultats inclura la participation à des congrès nationaux, la publication d'articles et de revues dans des journaux scientifiques (plusieurs publications sont actuellement en cours de rédaction) et la participation à des journées d'information plus orientées vers le grand public. Le doctorant participera à la vie de l'école doctorale par la présentation régulière de ses travaux et par la validation de la formation doctorale. L'université de Lorraine est partenaire de « Ma Thèse en 180 secondes », un concours pour lequel le doctorant pourra suivre une formation spécifique. - Bien-être matériel, intellectuel et personnel. Les encadrants s'engagent à définir clairement la problématique, à veiller au bon déroulement du cursus en s'appuyant sur la charte du doctorat et la convention de formation, et à discuter à tout moment avec le doctorant des résultats obtenus au cours de la thèse et des éventuelles difficultés. Ils mettront toutes les ressources nécessaires à sa disposition : matériel, accès à des données, financements. Le projet présenté constitue un travail déjà bien avancé, permettant au candidat d'équilibrer l'emploi du temps de la semaine entre temps professionnel et temps personnel. - Devenir du doctorant. Le doctorant aura d'excellentes perspectives de carrière par la suite, car les compétences en bioinformatique, en analyses omiques, en statistiques multivariées et en biologie des systèmes sont recherchées à la fois dans le milieu universitaire et dans l'industrie. IL bénéficiera du réseau collaboratif international d'Almut Heinken et Jean-Louis Guéant pour poursuive son cursus en post doc.

Type de contrat

Concours pour un contrat doctoral

école doctorale

BioSE - Biologie Santé Environnement

équipe

contexte

Over the last 40 years, there has been a dramatic worldwide increase in obesity, including in children. Obesity is a risk factor for noncommunicable diseases, including metabolic syndrome, type 2 diabetes, non-alcoholic steatohepatitis (NASH), and cardiovascular disease. These diseases are thought to be caused by overconsumption of calories, an unhealthy “Western” diet high in sugar and fat and low in fiber, and a sedentary lifestyle. However, recent evidence also suggests that early factors in life, including low birth weight, vitamin deficiency in mothers during pregnancy, and maternal over-and undernutrition predispose infants to obesity and metabolic syndrome later in life. This is referred to as Developmental origins of chronic health and disease (DOHAD), also called fetal programming, and has been linked to multiple mechanisms, including nutrition-induced changes in epigenetic regulation of gene expression in early life. Fetal programming related to deficiency in methyl donors (vitamin B12 and folate) has been proposed to predispose children to obesity and metabolic syndrome. Epigenetics describes reversible and inheritable genetic modifications that do not change the DNA sequence, namely chromatin structure changes, nucleosome repositioning, DNA methylation, and histone modification. Enzymes carrying out or reversing epigenetic modifications include DNA methyltransferases, histone acetyltransferases and deacetylases, histone methyltransferases and demethylases, lysine acetyltransferases, and lysine demethylases. The sum of epigenetic modifications within a cell is called the epigenome. Through epigenetic mechanisms, gene expression is regulated; hence, they play an essential role in cell differentiation and adaptation to environmental changes, such as the availability of nutrients and chemical exposures. Epigenetic modifications are strongly linked to one-carbon metabolism, in which the universal methyl group donor N-acetyl-S-methionine (SAM), the B-vitamins folate (B9) and cobalamin (B12), and the amino acid methionine play a central role. SAM is produced in the methionine cycle in which its precursor methionine is synthesized by methionine synthase (encoded by MTR) using methylfolate as co-substrate and B12 as co-factor. Deficiency in methyl donors such as folate during pregnancy can result in liver and heart steatosis and neural defects in offspring. Similar effects are produced by silencing of methionine synthase. Hence, varying cellular levels of one-carbon metabolites and their substrates (e.g., carbohydrates) affect the regulation state of genes. DNA regulation is also mediated by the histone deacetylase sirtuin 1 (SIRT1). SIRT1 is crucial in regulating energy metabolism, inflammation, cell stress, and insulin secretion. SIRT1 is protective against metabolic syndrome and insulin resistance and is downregulated in patients with metabolic syndrome and obesity. Both overnutrition and deficiency in methyl donors (B12 and folate) and inherited disorders of cobalamin (B12) metabolism (IECM) are associated with a decrease in SIRT1, in a rat model of foetal progamming produced by the deficiency in methyl donors. The decreased expression and activity of Sirt1 is also associated with the neurological and cardiovascular outcomes in mice with selective gene silencing of Mtr in brain and myocardium. They are reversed by Sirt1 agonists. Interestingly, the rodent KO or nutritional models of fetal programming develop outcomes of metabolic syndrome during aging through epigenomic mechanisms. Epigenome-diet interactions are thought to be causal for fetal programming. For instance, previous studies in the INSERM 1256 NGERE lab have demonstrated that epigenetic changes resulting from maternal over-or undernutrition predisposed the offspring towards obesity. Animal studies suggest that maternal dietary interventions before pregnancy, including vitamin supplementation, can modify epigenetic signatures and reverse fetal programming towards obesity and metabolic syndrome. Besides exposures arising from the diet, environmental chemicals, or drugs, the epigenome has been proposed to be influenced by the gut microbiota, namely, the ecosystem of microbes residing in the human intestine. The human gut microbiota performs essential functions for human health, including maturation of the developing infant's immune system, protection against pathogens, digestion and transformation of dietary nutrients, and synthesis of bioactive metabolites. For example, gut microbes synthesize amino acids, and B vitamins, including B9 and B12. Gut microbes also produce the short-chain fatty acids acetate, propionate, and butyrate, which directly influence gene regulation in the host through at least four independent mechanisms. For instance, butyrate acts as a histone deacetylase inhibitor. Consequently, the gut microbiome modulates global histone acetylation and methylation profiles in multiple host tissues in a diet-dependent manner. Changes in gut microbiome composition have been repeatedly linked to lifestyle-associated metabolic diseases including obesity, type 2 diabetes, and metabolic syndrome. Remarkably, animal models have shown that obesity is transmissible from mother to child via an obesogenic microbiota. A long-term high-fat diet led to alterations of histone methylation and acetylation in intestinal epithelial cells mediated by the gut microbiota, and epigenetic changes could be transferred to germfree animals via a fecal transplant together in combination with a short-term high-fat diet.

spécialité

Sciences de la Vie et de la Santé - BioSE

laboratoire

NGERE - Nutrition-Génétique et Exposition aux Risques Environnementaux

Mots clés

programmation fœtal, épigénome, microbiome intestin, alimentation, biologie des systèmes

Détail de l'offre

Les origines développementales de la santé et des maladies chroniques (DOHAD), également appelées programmation fœtal, liées à la malnutrition maternelle (suralimentation, dénutrition ou carence maternelle en donneurs de méthyle, vitamine B12 et folate) prédisposent les enfants à l'obésité et au syndrome métabolique, via des interactions métabolisme-épigénome. Les maladies héréditaires du métabolisme de la vitamine B12 (MHM) produisent des effets similaires. La dysbiose intestinal peut également augmenter le risque d'obésité pathologique lié à l'épigénome. Nous proposons d'étudier les mécanismes complexes alimentation-épigénome-microbiome intestinal du foetal programming en combinant les analyses multi-omiques à la modélisation multi-échelle de la biologie des systèmes. Les données méthylome/métabolome/microbiome de cohortes mères-enfants et multi-omiques (métabolome/transcriptome/protéome/méthylome) de placenta des cohortes et de fibroblastes de patients MHM seront analysées en fonction des manifestations cliniques. Des modèles personnalisés par intégration des données multi-omiques dans des reconstructions à l'échelle du génome et les flux métaboliques seront analysés. L'objectif est de générer des hypothèses vérifiables sur les prédicteurs de l'obésité par modélisation des systèmes.

Keywords

fetal programming, epigenome, gut microbiome, nutrition, systems biology

Subject details

Developmental origins of chronic health and disease (DOHAD), also called fetal programming, linked to maternal malnutrition (overnutrition, undernutrition or maternal deficiency of methyl donors, vitamin B12 and folate) predispose children to obesity and metabolic syndrome, via metabolism-epigenome interactions. Hereditary diseases of vitamin B12 metabolism (MHM) produce similar effects. Gut dysbiosis may also increase the risk of epigenome-related pathological obesity. We propose to study the complex diet-epigenome intestinal microbiome mechanisms of fetal programming by combining multi-omics analyses with multi-scale modeling of systems biology. Methylome/metabolome/microbiome data from mother-child cohorts and multi-omics (metabolome/transcriptome/proteome/methylome) of placenta from cohorts and fibroblasts from MHM patients will be analyzed based on clinical manifestations. Customized models by integrating multi-omics data into genome-wide reconstructions and metabolic fluxes will be analyzed. The goal is to generate testable hypotheses about obesity predictors through systems modeling.

Profil du candidat

M2 en biologie, biochemie, biologie des systèmes ou similaire
Bonne compétence en analyses statistiques
Connaissance fundamentale de la biologie des systèmes désirable

Candidate profile

Masters degree in biology, biochemistry, systems biology or similar
Good knowledge of statistical methods
Basic knowledge of systems biology would be of advantage

Référence biblio

1 Sonnenburg, J. L. & Backhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature 535, 56-64, doi:10.1038/nature18846 (2016).
2 Symonds, M. E., Sebert, S. P., Hyatt, M. A. & Budge, H. Nutritional programming of the metabolic syndrome. Nat Rev Endocrinol 5, 604-610, doi:10.1038/nrendo.2009.195 (2009).
3 Gueant JL, Gueant-Rodriguez RM, Kosgei VJ and Coelho D. Causes and consequences of impaired methionine synthase activity in acquired and inherited disorders of vitamin B12 metabolism. Crit Rev Biochem Mol Biol 57:133-155 (2022)
4 King, J., Patel, M. & Chandrasekaran, S. Metabolism, HDACs, and HDAC Inhibitors: A Systems Biology Perspective. Metabolites 11, doi:10.3390/metabo11110792 (2021).
5 Gut, P. & Verdin, E. The nexus of chromatin regulation and intermediary metabolism. Nature 502, 489-498, doi:10.1038/nature12752 (2013).
6 Gueant, J. L., Namour, F., Gueant-Rodriguez, R. M. & Daval, J. L. Folate and fetal programming: a play in epigenomics? Trends Endocrinol Metab 24, 279-289, doi:10.1016/j.tem.2013.01.010 (2013).
7 Hieronimus, B. & Ensenauer, R. Influence of maternal and paternal pre-conception overweight/obesity on offspring outcomes and strategies for prevention. Eur J Clin Nutr 75, 1735-1744, doi:10.1038/s41430-021-00920-7 (2021).
8 Banerjee, S., Suter, M. A. & Aagaard, K. M. Interactions between Environmental Exposures and the Microbiome: Implications for Fetal Programming. Curr Opin Endocr Metab Res 13, 39-48, doi:10.1016/j.coemr.2020.09.003 (2020).
9 Van Treuren, W. & Dodd, D. Microbial Contribution to the Human Metabolome: Implications for Health and Disease. Annu Rev Pathol 15, 345-369, doi:10.1146/annurev-pathol-020117-043559 (2020).
10 Neis, E. P., Dejong, C. H. & Rensen, S. S. The role of microbial amino acid metabolism in host metabolism. Nutrients 7, 2930-2946, doi:10.3390/nu7042930 (2015).
11 Linares, D. M. et al. Lactic Acid Bacteria and Bifidobacteria with Potential to Design Natural Biofunctional Health-Promoting Dairy Foods. Front Microbiol 8, 846, doi:10.3389/fmicb.2017.00846 (2017).
12 Krautkramer, K. A. et al. Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues. Mol Cell 64, 982-992, doi:10.1016/j.molcel.2016.10.025 (2016).
13 Amabebe, E., Robert, F. O., Agbalalah, T. & Orubu, E. S. F. Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. Br J Nutr 123, 1127-1137, doi:10.1017/S0007114520000380 (2020).
14 Qin, Y. et al. An obesity-associated gut microbiome reprograms the intestinal epigenome and leads to altered colonic gene expression. Genome Biol 19, 7, doi:10.1186/s13059-018-1389-1 (2018).
15 Heinken, A. et al. Genome-scale metabolic reconstruction of 7,302 human microorganisms for personalized medicine. Nat Biotechnol, doi:10.1038/s41587-022-01628-0 (2023).
16 Heude, B. et al. Cohort Profile: The EDEN mother-child cohort on the prenatal and early postnatal determinants of child health and development. International Journal of Epidemiology 45, 353-363, doi:10.1093/ije/dyv151 (2016).
17 Busi, S. B. et al. Persistence of birth mode-dependent effects on gut microbiome composition, immune system stimulation and antimicrobial resistance during the first year of life. ISME Communications 1, 8, doi:10.1038/s43705-021-00003-5 (2021).
18 Kumaran, K. et al. The Pune Rural Intervention in Young Adolescents (PRIYA) study: design and methods of a randomised controlled trial. BMC Nutr.;3:41 (2017).