*

LUE Développement de cellules T anti-virus modifiées par un récepteur d'antigène chimérique anti-GD2 : migration et persistance dans un modèle allogénique de tumeur solide

Offre de thèse

LUE Développement de cellules T anti-virus modifiées par un récepteur d'antigène chimérique anti-GD2 : migration et persistance dans un modèle allogénique de tumeur solide

Date limite de candidature

31-05-2024

Date de début de contrat

01-10-2024

Directeur de thèse

BENSOUSSAN Danièle

Encadrement

Réunion d'équipe 6 bi-mensuelle, Réunion de groupe CAR T bi-mensuelle, réunion sur les résultats au minimum bi-mensuelle mais à la demande.

Type de contrat

Concours pour un contrat doctoral

école doctorale

BioSE - Biologie Santé Environnement

équipe

Equipe 6 : Ingénierie Cellulaire, Immunothérapie Cellulaire et Approches Translationnelles

contexte

Chimeric antigen receptor T cells, known as CAR-T cells, have generated extraordinary results in phase I/II clinical trials in the treatment of CD19+ B-cell hematological malignancies. The principle is based on the genetic modification of the patient's immune T cells by transferring a transgene coding for a chimeric receptor. This receptor recognizes antigens present on the surface of targeted tumor cells, regardless of any major histocompatibility complex (MHC) restriction, leading to their destruction. CARs are usually composed of an extracellular domain—a single-chain variable fragment (scFv) of a monoclonal antibody implicated in the recognition of the target cell antigen—and an intracellular domain responsible for the activation and the function of T cells [1]. Different generations of CAR-T cells have been raised, depending on the composition of the intra-cellular domain: (i) first generation, CD3z chain [2]; (ii) second generation, CD3z chain and a costimulation domain such as CD28, 4-1BB or OX40 [3,4]; and (iii) third generation, CD3zchain and two co-stimulation domains. A fourth generation called TRUCKS (T cells Redirected for antigen-Unrestricted Cytokine-initiated Killing) has been recently developed, where the transgene coding for a second-generation CAR-T is completed with a gene coding for a cytokine such as IL-12 or IL-15, for example [5]. Clinical trials for CD19 CAR-T cells have shown a high level of complete or partial remissions in patients with poor prognoses. For example, the results from the ELIANA and ENSIGN studies [6] showed a complete remission of 67% at 3 months in patients with acute lymphoblastic leukemia (ALL), which was maintained in almost 40% of patients after a median follow-up of 9 months. Nevertheless, despite these results and an effective management of adverse effects, more than half of patients will experience a relapse. In fact, according to data from follow-up studies, between 30-50% of patients who have been in remission are found to relapse within one year of the infusion of anti-CD19 CAR-T cells [7]. Different reasons were highlighted: the absence of persistence of CAR T cells, the absence or loss by the tumor cells of the antigen targeted by CAR T cells. Moreover, it is still difficult to transpose this therapy to solid tumors. This is due to the tumor microenvironment (TME) and involves numerous barriers of physical (access to the tumor), immunological (immunosuppressive environment induced by the tumor) and tumor targeting specificities, with an “off target” effect observed on healthy tissues. The development of this therapy in solid cancers is a major challenge for academic research teams and the pharmaceutical industry. To address these drawbacks, different groups, including ours, investigated different strategies to improve CAR-T cell efficiency and persistence. The first strategy is the engineering of the CAR construct: as an example, we can mention the work performed by Dr Loïc Reppel during a mobility in the Department of Immunology and Microbiology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (USA). He optimized the GD2-CAR-T cells by incorporating IL-15 gene in the construct to promote CAR-T cell expansion and persistence. They studied the antitumor activity in vitro and in vivo in a solid tumor model of lung cancers [8]. Although effective, the transgenic expression of cytokines can be associated with systemic toxicities [9], and genetically modified T cells might not express cognate cytokine receptors as they undergo activation and differentiation. Although this cytokine expression brings improvement in CAR T cells efficacy, it does not seem enough to modulate the TME. The second strategy relies on the raw cellular material used for transduction: instead of using T cells or mononuclear cells (PBMCs), it seems of interest to focus on a subpopulation of T cells known to present a low alloreactivity with a native TcR that can be challenged in vivo to maintain proliferation, efficacy and persistence of CAR T cells [10]. The idea of preparing CAR T cells from a defined population of T lymphocytes with anti-viral specificity (VSTs) could make it possible to maintain the expansion of CAR T cells, while controlling viral infections, given the frequent viral reactivations in these patients. This dual-potential drug would exert an anti-viral effect related to VSTs to control the infection and promote the in vivo expansion and persistence of CAR-VSTs thanks to a viral rechallenge, and finally an anti-tumor effect related to the CAR. Considering the experience of our team 6 of IMoPA and of the Nancy university hospital cell therapy department (UTCT) on VSTs in the treatment of viral infections in immunocompromised patients [11, 12], we decided to investigate, during the PhD of Valentine Wang, the generation of CD19 CAR-VSTs, as a proof of concept, using VSTs isolated by an immunomagnetic method based on IFN secretion after viral antigen stimulation. We optimized the protocol to generate those CD19 CAR-VSTs and could observe a high anti-tumoral and anti-viral dual effect. During the coming months of the PhD of Valentine Wang, we will check, both in vitro and in vivo, that CAR-VSTs are able to reinitiate an anti-tumor effect after a viral antigen restimulation. Moreover, during her second year of PhD, Valentine Wang, in the laboratory of G Dotti, implemented gene editing using CRISPR/Cas9 technology to disrupt the expression of molecules involved in graft rejection. In the end, while combining CAR-VSTs including the knock-out of HLA class I molecules, the PhD of Valentine Wang aims at generating allogeneic CAR cells. At that time, good results have been obtained on the two parts of the subject and efforts have to be maintained to combine the two strategies to develop allogeneic CD19-CAR-VST-HLA cl I KO. The aim of this project is to transpose this CAR-VST strategy to a solid tumor model, previously explored by Loïc Reppel during his post-doctorat. We aim at generating GD2-CAR-VST using a CAR that will be improved compared to the one that has been used in the work of Loïc Reppel [8]. As mentioned before, one of the most important challenge in solid tumor is the TME impairing CAR T cells to reach the tumor and to maintain their capacity to kill tumor cells. Incorporation of the IL-15 cytokine within the CAR construct produces an enrichment of cells with ‘memory‘ and ‘stem-cell' like phenotypes, and provides enhanced antigen-independent expansion and persistence in tumor sites and improved antitumor activity. However, as previously mentioned, as the transgenic expression of soluble cytokines is sometimes associated with systemic toxicities, the strategy needs to be improved. Moreover, CAR T cells efficacy is dependent on a reduction of TME blockade. In collaboration with Pr G Dotti, we propose to generate a CAR construct containing a gene coding for a membrane-bound form of IL12. This construct has been developed by Pr G Dotti's lab and it was shown that engineering a membrane-bound form of IL12 enhanced CAR T-cell and anti-tumor activity.

spécialité

Sciences de la Vie et de la Santé - BioSE

laboratoire

IMoPA - Ingénierie Moléculaire et Physiopathologie Articulaire

Mots clés

cellules CAR, Lymphocytes T anti-virus, Tumeur solide, persistance

Détail de l'offre

Les lymphocytes T génétiquement modifiés afin d'exprimer un récepteur chimérique d'antigène (CAR-T cells) ont montré une efficacité remarquable dans les hémopathies malignes lymphoïdes B. Cependant, les CAR T cells bénéficiant d'une autorisation récente de mise sur le marché sont produits à partir d'une matière première autologue. La complexité et la durée du circuit de production ainsi que le risque de contamination du médicament par des cellules tumorales amènent à s'interroger sur le fait de développer des CAR T cells allogéniques qui seraient immédiatement disponibles. Cependant, les réactions immunitaires induites dans ce contexte amènent notamment à administrer une immunosuppression puissante au patient à laquelle les CAR-T cells allogéniques doivent résister. De plus, la persistance des CAR-T cells allogéniques est limitée. Pour surmonter ces limites, il serait intéressant d'utiliser des CAR-T cells d'origine allogénique, préparés à partir d'une matière première maîtrisée dénuée d'effet alloréactif. Nous proposons une stratégie alternative innovante à ce qui se développe actuellement : générer des CAR-T cells à partir de lymphocytes T anti-viraux (CTL ou VST pour Virus specific T cells), une source de cellules présentant une faible alloréactivité vis-à-vis des antigènes HLA du patient, comme nous en avons fait la preuve de concept. La restimulation virale in vivo, soit par un vaccin, soit par la réactivation de virus latents, contribuerait à la persistance de l'action anti-tumorale des CAR-VST. En complément, afin d'éviter le rejet des CAR-T cells allogéniques, nous développons, en collaboration avec le laboratoire de G Dotti, une méthode de délétion des molécules HLA de classe I, responsables de la réaction de rejet.
Les CTL anti-viraux sont aujourd'hui produits en clinique soit par des techniques de culture cellulaire conduisant à des cellules essentiellement matures et effectrices, soit par des techniques de sélection immunomagnétique sur la base de la sécrétion d'IFNg en réponse à une stimulation par un pool de peptides viraux (système Prodigy, Miltenyi Biotec) comme nous le réalisons au CHRU de Nancy. Des travaux précédents ont montré que la population cellulaire enrichie par cette technique comprend des lymphocytes T mémoires plus immatures doués d'un potentiel d'expansion important, pré-requis pour la production et l'expansion des CAR-VST. Ainsi, ces lymphocytes T anti-viraux constituent une matière première pour la production de CAR-VST. Des travaux menés dans le cadre d'une thèse précédente nous ont permis de générer des CAR-VST anti-CD19 à partir de lymphocytes T anti-viraux fraichement isolés par technique immunomagnétique sur la base de leur sécrétion d'IFNg. Un procédé d'expansion de ces cellules préservant les sous-populations les plus immatures a été optimisé. Le potentiel anti-tumoral et anti-viral des CAR-VSTs expandus a été validé in vitro et est en cours de validation in vivo. Sur la base de cette preuve de concept, nous souhaitons développer des CAR-VST dans les tumeurs solides. Cependant, un des défis importants à relever dans le contexte des tumeurs solides est l'effet inhibiteur du microenvironnement tumoral. Pour cela, nous poursuivons notre collaboration avec l'équipe de G Dotti et nous utiliserons une construction associant un CAR dirigé contre un antigène tumoral : GD2 et un gène codant pour une forme membranaire d'IL12 qui exerce un effet potentialisateur sur le CAR et accroît son activité anti-tumorale. De plus, la forme membranaire de la cytokine réduit considérablement les effets indésirables liés à la diffusion systémique de la cytokine. Nous évaluerons l'efficacité, la toxicité et la persistance de ces CAR-VST-GD2-IL12m à la fois in vitro et in vivo dans un modèle murin NSG. Ce projet sera mené par un étudiant en thèse d'université au sein de l'équipe 6 CImIND du laboratoire IMoPA et durant une année au sein du laboratoire du Pr G Dotti à l'UCN, Chapel Hill.

Keywords

CAR T cells, Virus specific T cells, solid tumor, persistance

Subject details

T lymphocytes genetically modified to express a chimeric antigen receptor (CAR-T cells) have generated extraordinary results in CD19+ B-lymphoid malignancies. However, CAR-T cells benefiting from recent marketing authorization are produced from an autologous raw material. The complexity and duration of the production circuit as well as the risk of contamination of the drug by tumor cells led us to question the fact of developing allogeneic CAR-T cells which would be immediately available. However, the immune reactions induced in this context requires the use of a powerful immunosuppression against which the allogeneic CAR-T cells must resist. In addition, the persistence of allogeneic CAR-T cells is limited. To overcome these limitations, it would be interesting to use CAR-T cells of allogeneic origin, prepared from a controlled raw material devoid of alloreactive effect. We propose an innovative alternative strategy to what is currently developed: generating CAR-T cells from anti-viral T lymphocytes (CTL or VST for Virus specific T cells), a source of cells with low alloreactivity towards the patient's HLA antigens, as we have demonstrated in a proof of concept. Viral restimulation in vivo, either by a vaccine or by the reactivation of latent viruses, would contribute to the persistence of the anti-tumoral effect of CAR-VST. In addition, in order to avoid the rejection of allogeneic CAR-T cells, we are developing, in collaboration with G Dotti's laboratory, a method for deleting HLA class I molecules, responsible for the rejection reaction. Viral specific T cells are currently produced in a clinical setting either by cell culture techniques leading to essentially mature and effector cells, or by immunomagnetic selection techniques based on the secretion of IFNg in response to stimulation by a pool of viral peptides (Prodigy system, Miltenyi Biotec) as we carry out at the Nancy University Hospital. Previous work has shown that the cell population enriched by this technique includes more immature memory T lymphocytes with significant expansion potential, a prerequisite for the production and expansion of CAR-VSTs. Thus, these VST constitute a raw material for the production of CAR-VST. Work carried out as part of a previous thesis allowed us to generate CD19-CAR-VSTs from freshly isolated VST by immunomagnetic technique on the basis of their IFNg secretion. A process for expanding these cells while preserving the most immature subpopulations has been optimized. The anti-tumor and anti-viral potential of expanded CAR-VSTs have been validated in vitro and is currently being validated in vivo. Based on this proof of concept, we aim to develop CAR-VSTs in solid tumors. However, one of the important challenges to overcome in the context of solid tumors is the inhibitory effect of the tumor microenvironment. Thus, thanks to our collaboration with G Dotti's team, we will use a construction combining a CAR directed against a tumor antigen: GD2 and a gene coding for a membrane-bound form of IL12 which exerts a potentiating effect on the CAR and increases its anti-tumor activity. In addition, the membrane-bound form of the cytokine considerably reduces the adverse effects linked to systemic diffusion of the cytokine. We will evaluate the efficacy, toxicity and persistence of these CAR-VST-GD2-IL12m both in vitro and in vivo in a NSG mouse model. This project will be performed by a PhD student within the CImIND team 6 of the IMoPA laboratory and for one year in the laboratory of Professor G Dotti at NCU, Chapel Hill.

Profil du candidat

Solides connaissances en Immunologie et Biologie cellulaire
Capacité à appréhender les modèles animaux
Bonne capacité à mettre en œuvre des techniques telles que la cytométrie en flux, des tests fonctionnels cellulaires.
Un parcours d'études en faculté de pharmacie serait apprécié.

Candidate profile

Solid knowledge in Immunology and Cellular Biology
Ability to work on animal models
Good capcacity to implement techniques such as flow cytometry, cellular functional tests.
Pharmacy study background would be appreciated.

Référence biblio

1. Dotti, G.; Gottschalk, S.; Savoldo, B.; Brenner, M.K. Design and Development of Therapies using Chimeric Antigen Receptor- Expressing T cells. Immunol. Rev. 2014, 257, 107–126.
2. Gross, G.; Waks, T.; Eshhar, Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl. Acad. Sci. USA 1989, 86, 10024–10028. 3. Milone, M.C.; Fish, J.D.; Carpenito, C.; Carroll, R.G.; Binder, G.K.; Teachey, D.; Samanta, M.; Lakhal, M.; Gloss, B.; Danet-Desnoyers, G.; et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. 2009, 17, 1453–1464.
4. Haynes, N.M.; Trapani, J.A.; Teng, M.W.L.; Jackson, J.T.; Cerruti, L.; Jane, S.M.; Kershaw, M.H.; Smyth, M.J.; Darcy, P.K. Singlechain antigen recognition receptors that costimulate potent rejection of established experimental tumors. Blood 2002, 100, 3155–3163.
5. Chmielewski, M.; Abken, H. TRUCKs: The fourth generation of CARs. Expert Opin. Biol. Ther. 2015, 15, 1145–1154.
6. Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448.
7. Shah, N.N.; Fry, T.J. Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol. 2019, 16, 372–385.
8. Reppel L, Tsahouridis O, Akulian J, Davis IJ, Lee H, Fucà G, Weiss J, Dotti G, Pecot CV, Savoldo B. Targeting disialoganglioside GD2 with chimeric antigen receptor-redirected T cells in lung cancer. J Immunother Cancer. 2022 Jan;10(1):e003897.
9. Zhang, L. et al. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin. Cancer Res. 2015, 21, 2278–2288.
10. Wang X, Urak R, Walter M, et al. Large-scale manufacturing and characterization of CMV-CD19CAR T cells. J Immunother Cancer 2022;10:e003461.
11. Qian C, Campidelli A, Wang Y, Cai H, …, Decot V, Reppel L, Salmon A, Clément L, Bensoussan D. Curative or pre-emptive Adenovirus specific T-cell transfer from matched unrelated or third party haploidentical donors after HSCT, including UCB transplantations: A successful phase I/II multicenter clinical trial. Journal of Hematology & Oncology, 2017, May 8;10(1):102-116.
12. Hazane Leroyer E, Petitpain N, Morisset S…, Reppel L, Rouard H, Nguyen-quoc S, Dalle JH, D'Aveni M, Bensoussan D. On behalf of the SFGM-TC: real-life use of third-party virus specific T-cell transfer in immunocompromised transplanted patients. HemaSphere, 2023, in press.
13. Qian C, Wang Y, Cai H, Laroye C, De Carvalho Bittencourt M, Clement L, Stoltz JF, Decot V, Reppel L, Bensoussan D. Adenovirus-specific T-cell Subsets in Human Peripheral Blood and After IFN-γ Immunomagnetic selection. J Immunother. 2016 Jan;39(1):27-35.
14. Hu J, Yang Q, Zhang W, et al. Cell membrane-anchored and tumor-targeted IL- 12 (attIL12)-T cell therapy for eliminating large and heterogeneous solid tumors. J Immunother Cancer. 2022;10:e003633