*

Modélisation, contrôle et développement de PAT pour un mini-mélangeur pneumatique de poudres permettant les tests de libération en temps réel pour des applications de médecine personnalisée

Offre de thèse

Modélisation, contrôle et développement de PAT pour un mini-mélangeur pneumatique de poudres permettant les tests de libération en temps réel pour des applications de médecine personnalisée

Date limite de candidature

27-05-2024

Date de début de contrat

01-07-2024

Directeur de thèse

CARES PACHECO Maria Graciela

Encadrement

The PhD candidate will be working on an academic-industrial collaboration involving the HES-SO Valais Wallis (main working location), the Reactions and Chemical Engineering Laboratory (LRGP) at University of Lorraine in France and Dec Group, a recognized global leader in the field of powder handling and process containment systems for the pharmaceutical industry. The PhD thesis will be supervised by Prof G. Francois at HES-SO Valais Wallis and by Dr. M.-G. Cares at the University of Lorraine, and will involve both experimental and methodological/theoretical research work, in direct collaboration with industry. The research project, of multidisciplinary nature, will also be advised by Prof. M. Rüdt at HES-SO Valais and by Prof. V. Falk at the University of Lorraine.

Type de contrat

Financement d'établissement de l'Union Européenne

école doctorale

SIMPPÉ - SCIENCES ET INGENIERIES DES MOLECULES, DES PRODUITS, DES PROCEDES ET DE L'ÉNERGIE

équipe

Axe 5 - GENIE DES PRODUITS

contexte

Powder mixing is a critical step in pharmaceutical as well as in numerous other industries. Although the manufacturing process for pharmaceutical solid-dose products has been studied for many decades, the understanding of mixing and the applied techniques is still continuously evolving. For example, one of the major challenges in process development is to determine the relationship between raw material properties, process conditions, such as particle size distribution [1], particle morphology, moisture content, and both micro and meso-structure, and critical quality attributes [2, 3, 4]. At present, the new research topics are also linked to the fact that the pharmaceutical industry is experiencing a significant transformation driven by several factors. Firstly, the rise of personalized medicine calls for adaptations of manufacturing processes. Pharmaceutical companies now need to adjust their operations to accommodate the production of smaller batches. Secondly, to reduce the expenses associated with healthcare, the industry is increasingly embracing continuous manufacturing to reduce production costs. Regulatory authorities actively promote continuous manufacturing as it offers enhanced control over the manufacturing process, ensuring greater consistency in product quality. Thirdly, re-shoring of production and the localization of production capacity also affects batch sizes and requires more flexible equipment. These three factors lead to research questions of how to best construct, monitor, and control mixing equipment at smaller scale in batch-wise or continuous production. The aspect of monitoring and control is exacerbated in continuous manufacturing. Here, the manufacturing process must be continuously monitored and controlled to remain in a state of high product quality. Monitoring is realized under the umbrella term process analytical technology (PAT) [5]. The central point to PAT is the generation of product quality information in real time and its use to control the critical process parameters of a manufacturing process. A key to improve the monitoring and operation of processes in general, and of powder mixing in particular, is the development of process models. With a model, not only it becomes possible to predict the time evolution of powder mixing efficiency as a function of the operating conditions, and therefore to design the adequate closed-loop controllers and/or optimize the operating conditions, but also unmeasured process variables can be estimated. There have been several approaches to model powder mixers, leading to very different model structures, ranging from statistical (data-driven) models [6] over compartment models [7] to Discrete Element Method (DEM) models [8]. All model structures have pros and cons and are more or less suited depending on the technology and the purpose of the model. One challenge is that, to the best of our knowledge, there is no model structure in the literature that can be directly applied to build a model of the pneumatic powder mixer of this project. Dec Group develops, produces, and sells integrated end-to-end process lines to pharmaceutical manufacturers. Dec Group also pursues a strategy of automatizing processes and removing mechanical components to excel in robustness of the equipment and processes. Following this strategy, Dec Group's patented pneumatic Batchmixer (US8834011B2) is the first powder blender without moving or rotating parts active in the mixing process. Unlike mixing systems on the market with mechanical bearings, the risk of contamination of the powder with abrased particles is eliminated. The Batchmixer, including its charging and discharging system, can be integrated into closed process lines with high containment and with cleaning and sterilization in place. It is therefore especially well-suited for pharmaceutical powder handling. Now, Dec Group aims for the development of the DecBlender, a comprehensive renewal of the Batchmixer, by introducing the following innovative features. Firstly, the integration of process analytical technology (PAT) to provide real-time monitoring and analysis. Secondly, the ability to handle mini batch sizes. Thirdly, the vision includes the prospect of continuous manufacturing. Hence, the scientific objectives of the project are in line with the fundamental, methodological and technological needs of the DecBlender.

spécialité

Génie des Procédés, des Produits et des Molécules

laboratoire

LRGP - Laboratoire Réactions et Génie des Procédés

Mots clés

Mélange, PAT, Modélisation des procédés, Contrôle et optimisation, Poudres, Pharmaceutiques

Détail de l'offre

Le projet de thèse est une collaboration interdisciplinaire entre HES-SO Valais Wallis, LRGP et le groupe Dec, avec le principal lieu de travail à Sion, en Suisse. Financé par InnoSuisse, l'Agence Suisse de l'Innovation, ce projet vise à développer un mini-mélangeur pneumatique semi-continu automatisé pour la médecine personnalisée. Il utilise une technologie de transfert de poudre brevetée intégrée aux Technologies Analytiques de Processus (PAT). Le projet a deux objectifs scientifiques principaux :
Premièrement, il vise à développer un modèle dynamique du mélangeur de poudre et à le valider à l'aide de données expérimentales. Ce modèle sera ensuite utilisé pour dériver des lois de contrôle et des conditions de fonctionnement optimales, améliorant les performances de mélange en fonction des différentes propriétés physiques des poudres.
Deuxièmement, le projet vise à développer un cadre PAT, comprenant l'emplacement de mesures NIR, les réglages, le pipeline des données, ainsi que les procédures de calibration et de validation. Le cadre PAT devrait permettre la détection automatique du point de mélange ou la surveillance continue de la progression du mélange.

Keywords

Mixing, PAT (Process Analytical technology), Process Modelling, Control and Optimization, Powders, Pharmaceuticals

Subject details

The thesis project is an interdisciplinary collaboration between HES-SO Valais Wallis, LRGP, and the Dec Group, with the main working location in Sion, Switzerland. Financed by InnoSuisse, the Swiss Innovation Agency, this project aims to develop an automated, semi-continuous pneumatic mini-blender for personalized medicine. It utilizes a patented powder transfer technology integrated with Process Analytical Technologies (PAT). The project has two primary scientific objectives: First, it seeks to develop a dynamic model of the powder mixer and validate it using experimental data. This model will then be used to derive control laws and optimal operating conditions, enhancing blending performance based on various physical properties of the powders. Second, the project aims to develop a PAT framework, encompassing NIR measurement location, settings, data analysis pipeline, and calibration and validation procedures. The PAT framework is anticipated to enable automatic detection of the mixing endpoint or continuous monitoring of the mixing progress.

Profil du candidat

Un diplôme de master en génie chimique, en génie des procédés ou dans un domaine connexe, avec d'excellentes performances académiques, est requis.

Une solide expérience dans la modélisation des procédés, le contrôle des procédés et l'analyse est indispensable, avec une connaissance souhaitable de la technologie des poudres.

La maîtrise de l'anglais est attendue, et de bonnes compétences en français et/ou en allemand sont un atout.

Le dossier de candidature du candidat doit inclure :

• CV et lettre de motivation
• Relevés de notes obtenus pour le diplôme de master (ou équivalent) et une copie du diplôme si disponible
• Deux lettres de recommandation, de préférence du directeur du programme de master et du superviseur du projet de recherche du candidat
• Documents écrits (publications, mémoire de master, rapport, etc.) liés au projet de recherche du candidat.

Le dossier de candidature complet doit être envoyé aux superviseurs de thèse par e-mail.

Les candidats intéressés sont invités à contacter le Prof. G. François ou le Prof. M. Rüdt à HES-SO Valais Wallis et le Dr M.-G. Cares à l'Université de Lorraine pour obtenir des informations supplémentaires.

gregory.francois@hes-so.ch
matthias.rudt@hes-so.ch
maria-graciela.cares@univ-lorraine.fr

Candidate profile

A master's degree in chemical engineering, process systems engineering, or a related field with outstanding academic performance is required.

A solid foundation in process modeling, process control, and analytics is essential, with desirable knowledge of powder technology.

Fluency in English is expected, and good skills in French and/or German are advantageous.

The candidate's application package must include:
• CV and letter of motivation
• Transcripts of grades obtained for the Master's (or equivalent) degree and a copy of the diploma if available
• Two letters of recommendation, preferably from the director of the Master's program and the supervisor of the candidate's research project
• Written materials (publications, Master's thesis or report, etc.) related to the candidate's research project.

The complete application package must be sent to the thesis supervisors via email. Interested candidates are invited to contact Prof. G. Francois or Prof. M. Rüdt at HES-SO Valais Wallis and Dr. M.-G. Cares at the University of Lorraine for additional information.

gregory.francois@hes-so.ch
matthias.rudt@hes-so.ch
maria-graciela.cares@univ-lorraine.fr

Référence biblio

[1]. Lloyd, P. J. Particle Size Analysis. in Encyclopedia of Physical Science and Technology (Third Edition) (ed. Meyers, R. A.) 649–654 (Academic Press, 2003).
[2]. Escotet-Espinoza, M. S. et al. Using a material property library to find surrogate materials for pharmaceutical process development. Powder Technol. 339, 659–676 (2018).
[3]. Ojha, V. K., Schiano, S., Wu, C. Y., Snasel, V. & Abraham, A. Predictive modeling of die filling of the pharmaceutical granules using the flexible neural tree. Neural Comput. Appl. 29, 467–481 (2018).
[4]. Tahara, K. Pharmaceutical formulation and manufacturing using particle/powder technology for personalized medicines. Adv. Powder Technol. 31, 387–392 (2020).
[5]. FDA, C., CVEM, ORA. PAT — A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance. (2004).
[6]. Wu, H., Heilweil, E. J., Hussain, A. S. & Khan, M. A. Process analytical technology (PAT): Effects of instrumental and compositional variables on terahertz spectral data quality to characterize pharmaceutical materials and tablets. Int. J. Pharm. 343, 148–158 (2007).
[7]. Portillo, P. M., Muzzio, F. J. & Ierapetritou, M. G. Characterizing powder mixing processes utilizing compartment models. Int. J. Pharm. 320, 14–22 (2006).
[8]. Dubey, A., Sarkar, A., Ierapetritou, M., Wassgren, C. R. & Muzzio, F. J. Computational Approaches for Studying the Granular Dynamics of Continuous Blending Processes, 1-DEM Based Methods. Macromol. Mater. Eng. 296, 290–307 (2011).