*

ANR : Poudres alimentaires d'origine végétale : rôle de la surface des particules dans l'expression de leurs propriétés fonctionnelles

Offre de thèse

ANR : Poudres alimentaires d'origine végétale : rôle de la surface des particules dans l'expression de leurs propriétés fonctionnelles

Date limite de candidature

15-11-2023

Date de début de contrat

01-10-2024

Directeur de thèse

GAIANI Claire

Encadrement

L'ensemble du projet sera piloté par la porteuse du projet ANR JCJC, Jennifer BURGAIN et co-directrice de la thèse. A ce titre, celle ci interviendra dans toutes les parties de l'étude et elle organisera les réunions d'avancement de la thèse, les comités de thèse, la rédaction du mémoire et la soutenance de thèse. Le·a doctorant·e préparera les réunions d'avancement de la thèse en synthétisant ses résultats sous forme de diaporamas et de rapports. . Le·a doctorant·e participera à l'élaboration du plan expérimental permettant de répondre aux questions scientifiques définies. La directrice de thèse Claire GAIANI (LIBio) participera aux réunions d'avancement de thèse, aux comités de thèse et à la soutenance de thèse et apportera son aide quant à la rédaction du mémoire. Elle apportera son expertise sur les relations propriétés - structures - fonctions des poudres alimentaires.

Type de contrat

ANR Financement d'Agences de financement de la recherche

école doctorale

SIReNa - SCIENCE ET INGENIERIE DES RESSOURCES NATURELLES

équipe

contexte

Many types of fruit and vegetables are processed to increase their shelf-life, year-round availability, or to increase their value, which integrates structure-enabling and preservation techniques. Minimal processing includes drying and/or grinding (powdering process) of fruits and vegetables and guarantee that such foods are as nutritious as the food in its unprocessed form (Fitzpatrick and Ahrné, 2005). However, fruits and vegetables powders contain a high quantity of low molar mass sugars with low glass transition temperature (Tg) (Fang and Bhandari, 2011). The direct consequence is that fruit powders are highly hygroscopic and sticky at high temperatures but also at ambient temperature if the water content is not well mastered. This feature causes the powder adhesion to surfaces and powder caking during the storage, which affects the quality of the final product. The Tg is one of the most important parameters to consider during powder storage. Indeed, the phenomenon of glass transition is the gradual and reversible transition of amorphous materials from a hard and 'glassy' state into a viscous and rubbery state as the temperature and/or the moisture content is increased. The glass transition is also linked to the water activity and water as a strong plasticizer decreases the Tg. Also, the glass transition temperature depends on the molecular mass as the Tg of monosaccharides, disaccharides, oligosaccharides and polysaccharides increases with increasing their molecular mass (Roos, 2002). If the glass transition is reached during powder storage, unexpected phenomena can happen that affect powder functionality such as reconstitution ability. An important structure-determining component in this context is the particle surface. It should be noted that particle surfaces, in the case of fruits and vegetables powders, are essentially constituted by broken structures. Because of various origins, their particle size and shape distributions, chemical composition, surface composition, and physical properties are highly variable. Therefore, more than one analytical technique is often required to obtain a full set of information about a given scientific question (Burgain et al., 2017). Among these questions, the powders flowability and reconstitution are of upmost importance for the industry considering that most powdered ingredients are transported and dissolved or infused before use. For the past few years, numerous powder surface analysis techniques were used to further understand the role of powder surface on functionalities impairments. For example, microscopy techniques such as Scanning Electron Microscopy (SEM), Confocal Laser Scanning Microscopy (CLSM) or even chemical composition techniques such as X-ray Photoelectron Spectroscopy (XPS) are already widely used (Burgain et al., 2017). However, AFM is currently a rising star in the food powder surface analysis field, mainly for its resolutive capacity. AFM is a versatile tool compared to other surface analysis techniques. For example, AFM allows to study particle surface topography and roughness, surface chemistry and nanomechanics. In a previous project, we were able to have a better understanding of surface modification after high temperature storage of whey protein isolate and micellar casein powders (Burgain et al., 2016a, 2016b). Surface hardening with the development of a poorly dispersible skin layer composed of aggregated micelles was evidenced to be the phenomenon responsible for the reconstitution impairment. However only punctual analyses were possible and the development of an environmental chamber around the AFM will allow for continuous measurements at nanometer scale. By controlling the temperature and RH, their variation during time in the neighbouring of the sample will provide new insight in the elucidation of mechanisms occurring during powders storage or transport under unfavourable conditions, in particular when they reach the glass transition. Even if AFM was already applied to dairy powder, application to fruits and vegetables powders is still missing while there is an important industrial stake with the growth of the plant products market and the development of vegetable formulations. First experiments on fruits and vegetables powders provided hopeful results showing that when approaching glass transition, patches at the surface were crystallising by nucleation and the rest of the matrix presented a decreased elasticity. The glass transition event is accompanied by a physical change at the powder surface (modified topography) with a change in the Young modulus (modified nanomechanical properties) (Palzer, 2007). Moreover, powder caking related to glass transition is promoted by moisture adsorption which create liquid bridges between hydrophilic groups at particle surface (modified physicochemical properties). The strength of the technique is that it is now possible to follow the evolution of the same area during dynamic variation of temperature and RH. These observations confirm the fact that a focus at particle surface is undeniably required to better understand macroscopic phenomenon such as powder flowability, caking or reconstitution. This is particularly true for fruit powders that are highly hygroscopic materials with low glass transition temperature and as a consequence easily affected by ambient temperature and RH. In a recent work, we evidenced that above Tg, a viscous layer around the particle limits water entrance and is the limiting step in the global reconstitution process (Gaudel et al., 2022). With AFM, surface structure and chemical properties will be correlated thanks to the combination of surface topography analysis and force measurements.

spécialité

Génie biotechnologique et alimentaire

laboratoire

LIBIO - Laboratoire d'Ingénierie des Biomolécules

Mots clés

Poudres, Propriétés fonctionnelles, Surface des particules, Microscopie à force atomique

Détail de l'offre

Actuellement, la consommation de fruits et légumes est insuffisante, elle ne permet pas d'atteindre la dose recommandée et c'est la raison pour laquelle la recherche dans le domaine alimentaire se tourne vers la génération de produits et d'ingrédients issus de végétaux.
De nombreux fruits et légumes sont séchés et/ou réduits en poudre afin d'augmenter leur durée de conservation, leur disponibilité toute l'année ou pour augmenter leur valeur. Il est maintenant généralement admis que la composition de surface des particules a un fort impact sur les propriétés fonctionnelles des poudres, telles que la reconstitution et l'écoulement, car cette interface interagit directement avec l'environnement. Par conséquent, la caractérisation des propriétés de surface des poudres alimentaires est indispensable pour proposer des voies d'optimisation des propriétés fonctionnelles et garantir des produits de bonne qualité.
Le projet ExPowSE vise à comprendre les relations procédé-structure-fonction qui gouvernent les propriétés fonctionnelles des poudres de végétaux. Dans cette optique, une approche multi-échelle sera utilisée pour étudier les propriétés fonctionnelles de la poudre et les propriétés de surface des particules (topographie et rugosité, adhésion et nanomécanique) en utilisant la microscopie à force atomique (AFM). Même si les paramètres de procédé définissent la structure de surface de la poudre et les propriétés fonctionnelles, ils peuvent être impactés par les conditions environnementales (température, humidité relative) et le présent projet a pour ambition de les reproduire dans le but d'élucider les mécanismes conduisant à des modifications de surface de la poudre.

Keywords

Powders, Functional properties, Particle surface, atomic force microscopy

Subject details

Currently, the consumption of fruits and vegetables is insufficient, it does not allow reaching the recommended dose and this is the reason why research in the food field is turning to the generation of products and ingredients from plants. Many fruits and vegetables are dried and/or powdered to increase their shelf life, year-round availability or to increase their value. It is now generally accepted that particle surface composition has a strong impact on the functional properties of powders, such as reconstitution and flow, because this interface interacts directly with the environment. Therefore, the characterization of the surface properties of food powders is essential to propose ways of optimizing functional properties and guarantee good quality products. The ExPowSE project aims to understand the process-structure-function relationships that govern the functional properties of plant powders. With this in mind, a multi-scale approach will be used to study the functional properties of the powder and the surface properties of the particles (topography and roughness, adhesion and nanomechanics) using atomic force microscopy (AFM). Even if the process parameters define the surface structure of the powder and the functional properties, they can be impacted by environmental conditions (temperature, relative humidity) and the present project aims to reproduce them in order to elucidate the mechanisms leading to powder surface modifications.

Profil du candidat

Le (la) candidat(e) devra être titulaire d'un Master 2 ou d'un diplôme d'ingénieur en sciences des aliments, avec des compétences sur les méthodes de caractérisation physicochimique des aliments et une bonne expérience en laboratoire. Le (la) candidat(e) devra présenter de solides bases scientifiques afin de pouvoir entreprendre les travaux de thèse avec une approche multi-échelle. Il (elle) doit avoir des capacités de rigueur, d'initiative, d'autonomie, relationnelles, une excellente maîtrise de l'anglais (oral, écrit), de bonnes capacités rédactionnelles et de communication.

Candidate profile

The candidate must hold a Master 2 or an engineering degree in food sciences, with skills in physicochemical food characterization methods and good laboratory experience. The candidate must present solid scientific background in order to be able to undertake thesis work with a multi-scale approach. He (she) must have rigor, initiative, autonomy, interpersonal skills, excellent command of English (oral, written), good writing and communication skills.

Référence biblio

1. WHO, World Health Organization. Increasing fruit and vegetable consumption to reduce the risk of noncommunicable diseases. (2019).
2. FAO, Food and Agriculture Organization of the United Nations. Fruit and vegetables – your dietary essentials. (2020).
3. Cassani, L. & Gomez-Zavaglia, A. Sustainable Food Systems in Fruits and Vegetables Food Supply Chains. Frontiers in Nutrition 9, (2022).
4. World Health Organization. Fruit and vegetables for health: report of the Joint FAO. (2005).
5. Searchinger, T. et al. Creating a sustainable food future: A menu of solutions to feed nearly 10 billion people by 2050. Final report. (WRI, 2019).
6. Jiang, H., Zhang, M. & Adhikari, B. Fruit and vegetable powders. in Handbook of food powders 532–552 (Elsevier, 2013).
7. Data Bridge Market Research. Global Fruit and Vegetable Powders Market – Industry Trends and Forecast to 2028. (2021).
8. Fitzpatrick, J. J. & Ahrné, L. Food powder handling and processing: Industry problems, knowledge barriers and research opportunities. Chemical Engineering and Processing: Process Intensification 44, 209–214 (2005).
9. Burgain, J. et al. Surface chemistry and microscopy of food powders. Progress in Surface Science 92, 409–429 (2017).
10. Fang, Z. & Bhandari, B. Effect of spray drying and storage on the stability of bayberry polyphenols. Food chemistry 129, 1139–1147 (2011).
11. Roos, Y. H. Importance of glass transition and water activity to spray drying and stability of dairy powders. Le Lait 82, 475–484 (2002).
12. Liu, F., Cao, X., Wang, H. & Liao, X. Changes of tomato powder qualities during storage. Powder Technology 204, 159–166 (2010).
13. Chen, M. et al. Amorphous and humidity caking: A review. Chinese Journal of Chemical Engineering 27, 1429–1438 (2019).
14. Forny, L., Marabi, A. & Palzer, S. Wetting, disintegration and dissolution of agglomerated water soluble powders. Powder Technology 206, 72–78 (2011).
15. Fournaise, T. et al. Impact of formulation on reconstitution and flowability of spray-dried milk powders. Powder Technology 372, 107–116 (2020).
16. Lopez‐Quiroga, E., Prosapio, V., Fryer, P. J., Norton, I. T. & Bakalis, S. Model discrimination for drying and rehydration kinetics of freeze‐dried tomatoes. Journal of Food Process Engineering 43, e13192 (2020).
17. Benseddik, A., Azzi, A., Zidoune, M. N. & Allaf, K. Mathematical empirical models of thin-layer airflow drying kinetics of pumpkin slice. Engineering in Agriculture, Environment and Food 11, 220–231 (2018).
18. Górnicki, K., Kaleta, A. & Trajer, J. Modelling of dried apple rehydration indices using ANN. International Agrophysics 33, (2019).
19. Masterson, V. M. & Cao, X. Evaluating particle hardness of pharmaceutical solids using AFM nanoindentation. International journal of pharmaceutics 362, 163–171 (2008).
20. Burgain, J., Scher, J., Petit, J., Francius, G. & Gaiani, C. Links between particle surface hardening and rehydration impairment during micellar casein powder storage. Food Hydrocolloids 61, 277–285 (2016).
21. Burgain, J. et al. Local modifications of whey protein isolate powder surface during high temperature storage. Journal of Food Engineering 178, 39–46 (2016).
22. Gaudel, N. et al. Reconstitution of fruit powders: A process – structure – function approach. Journal of Food Engineering 315, 110800 (2022).
23. Palzer, S. Chapter 13 Agglomeration of dehydrated consumer foods. in Handbook of Powder Technology (eds. Salman, A. D., Hounslow, M. J. & Seville, J. P. K.) vol. 11 591–671 (Elsevier Science B.V., 2007).
24. Yu, W. & Hancock, B. C. Evaluation of dynamic image analysis for characterizing pharmaceutical excipient particles. International Journal of Pharmaceutics 361, 150–157 (2008).
25. Jenike, A. W. Quantitative design of mass-flow bins. Powder Technology 1, 237–244 (1967).